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the patch. A further improvement reported in [Geo04] is
a fourth order "bi-Poisson" equation, which matches both
pixel values and gradients at the boundary.

This simple approach has been very successful, described
in the media as "redefining the way retouching is done in
photography". An Internet search on Healing Brush reveals
its popularity.

2. Problems with Poisson cloning

Our current paper describes an improvement to both Poisson
cloning and the Healing Brush. Poisson cloning between
areas of different lighting conditions can be a problem
without this improvement. This often is the case with face
retouching to remove wrinkles when unwrinkled skin is
only available in areas of different lighting.

To provide a clean example of the problem, let’s try to
remove the scratch from the shadow area in Figure 5 using
only source material from the illuminated area.

Figure 5: Original image of pebbles and a scratch.

Figure 6: Scratch removed by simple inpainting.

Figure 6 shows the result of inpainting. Again, it is too
smooth.

In Figure 7, we see the result of Poisson cloning from
illuminated area into the shadow area. It correctly matches

Figure 7: Scratch removed by Poisson cloning from the illu-
minated area.

Figure 8: Scratch removed by covariant cloning from the
same illuminated area as in Figure 7. Method described in
section 4.

pixel values at the boundary of the patch, but the cloned
pebbles are still easy to spot. There is too much variation,
too high contrast, or dynamic range, in the "healed" area
of the image. This problem is inherent in the nature of
the Poisson equation (1), which transfers variations of g
without modifying their amplitude even if new brightness
values are modified to match the surroundings.

Figure 9: Areas used for Poisson cloning in Figure 7 and
covariant reconstruction, Figure 8.

3. The covariant approach

In order to solve this problem we borrow from the Retinex
[Lan77, Hor74] and the von Kries [vK02] theories of the
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adaptation of human vision. Also, our general approach is
close to [Geo05].

Figure 10: The central rectangle has constant pixel values.

The simultaneous contrast illusion, Figure 10, is an
example which shows that humans do not perceive lumi-
nance directly. (See [Gaz00, Sec00] for a general survey
on lightness perception and examples of illusions.) The
figure shows an uniform gray band surrounded by a variable
background. Due to our visual system’s adaptation, the
band appears to vary in lightness (perceived brightness) in
opposition to its surroundings. Following terminology from
Physics, we will call this contravariant change in lightness.

Lightness is perceived by humans through a given visual
system in a given state of adaptation. The state of adaptation
is critical to our fundamental judgement of brightness and
color. If the equations we use do not reflect this adaptation,
they can not produce results that are acceptable to that vi-
sual system. We find the concept of modified or covariant
derivative used in Physics to be a useful tool for making the
equations change “covariantly” with the adaptation of the vi-
sual system.

In the von Kries approach [vK02] adaptation to grayscale
is generalized to three types of sensors in the retina, L,M,
and S, which are responsible for color perception. Adapta-
tion is described by a multiplication of the (L,M,S) vector
by a matrix diagonal in LMS space. Local effects of adap-
tation of the von Kries type have been used in [Geo05] to
derive a mathematical description of the visual system.

In this paper we provide a simple mathematical recipe that
describes effects of adaptation illustrated in Figure 10. In the
usual equations we simply replace each derivative with a co-
variant derivative. These covariant derivatives are specified
so that the covariant gradient is equal to the perceived gra-
dient. In the example of Figure 10, constant pixel values in
the band have nonzero covariant derivative and describe the
perceived gradient.

4. Main Equations

Following the example of Electrodynamics and Quantum
Mechanics, we will replace conventional derivatives with co-
variant derivatives. They are closely related to the measure-
ment process, and in Theoretical Physics they are responsi-
ble for inertial effects, gravitation, electromagnetic and other
interactions. Introduced by Einstein, Grossmann and Weyl
[EG96,Wey23], they define the so-called “minimal” interac-
tion. Using covariant derivatives in the above sense is new to
the field of computer vision.

Covariant derivatives in our approach describe adaptation
of the visual system in the following way. As suggested in
[Geo05], a perceptually correct gradient is written based on
the following simple recipe: Each derivative is replaced with
a “derivative + function” expression:

∂
∂x

→ ∂
∂x

+A1(x,y) (3)

∂
∂y

→ ∂
∂y

+A2(x,y) (4)

Here A1 and A2 are the x and y components of the vector
function A(x,y), which is used to describe the adaptation of
the visual system. It represents the additional freedom which
redefines our perception of gradients based on adaptation
and will be specified later, in equations (8), (9) and (10). The
gradient visible in Figure 10 is due to covariant derivative
adapted to the surroundings.

It is well known that the Laplace equation � f = 0 with
Dirichlet boundary conditions is the simplest way to recon-
struct (or inpaint) a defective area in an image. Let’s write
the derivatives explicitly:

∂
∂x

∂
∂x

f +
∂
∂y

∂
∂y

f = 0, (5)

After performing the above substitution (3), (4), the Laplace
equation (5) is converted into the covariant Laplace equa-
tion:

(
∂
∂x

+ A1)(
∂
∂x

+A1) f +(
∂
∂y

+A2)(
∂
∂y

+A2) f = 0, (6)

which after differentiation can be written as

� f + f divA +2A ·grad f +A ·A f = 0. (7)

Here the vector function A(x,y) = (A1(x,y),A2(x,y))
describes adaptation of the visual system. It is related to
the “guidance field” in Poisson Image Editing [PGB03],
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1.2. Reconstruction by Poisson cloning

We would like to demonstrate Poisson cloning on a typical
example of an image needing repair. Figure 1 is a picture
of San Marco cathedral in Venice (courtesy of Russell
Williams). The image was scanned from film, with dust
added on purpose.

Figure 1: Basilica San Marco, Venice.

Figure 2: Detail from Figure 1.

Figure 2 shows detail in the same picture. Film grain,
noise and a scratch are visible. The goal is to remove the
scratch in a seamless way. In Figure 3 (left) we see the result
of inpainting. The method does a good job at interpolating
colors in the inpainted area, but suffers aesthetically. It lacks
the look and feel of real texture. It is too smooth. Adding
noise is the simplest solution, often used with inpainting
techniques.

Figure 3 (right) shows the scratch removed by Poisson
cloning. The source and target areas for the Poisson cloning
are shown in Figure 4.

Figure 3: Scratch removed by inpainting (left) and Poisson
cloning (right).

Figure 4: Areas in Figure 2 used for Poisson cloning.

This technology was first implemented in Photoshop 7.0
[Ado02], and first described in the Poisson Image Editing
paper [PGB03]. The algorithm is based on solving the Pois-
son equation with right hand side (source term) taken from
the image in some area of texture (see Figure 4). If the
grayscale image is f (x,y) and the sample area image is
g(x,y), Poisson cloning is solving the Poisson equation

� f (x,y) = �g(x,y) (1)

with Dirichlet boundary condition constraining the new
f (x,y) to match the original image at the boundary.

Everywhere in this paper

� =
∂2

∂x2 +
∂2

∂y2 . (2)

Also, g(x,y) is the texture we want to transfer to the
inpainted region. Texture is assumed translated to the
reconstruction area.

Dirichlet boundary conditions for the Poisson equation
make Poison cloning seamlessly match the boundary of
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and it is playing the same role as the vector potential in
Electrodynamics.

Here is how we define A(x,y) in the case of our improve-
ment of Poisson cloning. Following [Geo05], we assume the
visual system is completely adapted to the area of texture,
i.e. adapted to g(x,y). In other words, adaptation is such that
g(x,y) is covariantly constant, the covariant derivatives of g
are zero.

(
∂
∂x

+A1(x,y))g(x,y) = 0 (8)

(
∂
∂y

+A2(x,y))g(x,y) = 0 (9)

Solving for A(x,y) produces the specific form of the vector
function that we are going to use:

A(x,y) = −gradg
g

(10)

Substituting in equation (7), we obtain the final form of the
covariant Laplace equation:

� f
f

− 2 grad f
f

· gradg
g

− �g
g

+2 (gradg) · (gradg)
g2 = 0.

(11)

We see that the covariant Laplace equation is more
complicated, and actually very different, from the Laplace
equation. It incorporates terms describing interaction with
the external field g. In a way, this is a Poisson equation with
a modified �g term on the “right hand side”. However,
the structure of the equation prescribed by the covariant
derivatives formalism is very specific.

The model is similar to Gauge Theories in Physics (one
of which is Electrodynamics). Mathematically, we treat
vision and image space in terms of vector bundles, using
connections, or covariant derivatives as they are called in
Physics. In the case of Vision, since covariant derivatives
describe states of adaptation, it may be appropriate to call
them adapted derivatives.

This section attempted to show that the expression
2 grad f

f · gradg
g + �g

g − 2 (gradg)·(gradg)
g2 is the correct one to

choose as a source term in the modified Poisson equation for
seamless cloning based on the theory of adaptation. The next
section will show that the result produced with it is percep-
tually superior.

5. Implementation and experimental results

It would be rather difficult to try implement a direct itera-
tive solver for equation (11). In general, the problem we face
with such equations is not only complexity and performance,
but the fact that, a propri, it is not clear if a given iterative
scheme for a given equation will converge, and what are the
conditions for convergence.

The approach we take in our case is based on the follow-
ing unique property of equation (11):

Let’s start from

� f
g

= 0, (12)

and perform the differentiations. The result is

� f
f

− 2 grad f
f

· gradg
g

− �g
g

+2 (gradg) · (gradg)
g2 = 0.

(13)

We see that (13) is same as (11). Using the fact that
(11) is equivalent to (6) with “guiding field” extracted from
the sampling area and defined by (8), (9), we come to our
covariant reconstruction algorithm as follows:

(1) Divide the image by the sampling (texture) image.
This produces the intermediate image I(x,y).

I(x,y) =
f (x,y)
g(x,y)

(14)

(2) Solve the Laplace equation

�I(x,y) = 0, (15)

with Dirichlet boundary conditions defined by the ratio out-
side the reconstruction area.

(3) Multiply the result by the texture image g(x,y)

h(x,y) = I(x,y)g(x,y), (16)

and substitute the original defective image f (x,y) with the
new, “healed” image h(x,y) in the area of reconstruction.

The result of this algorithm is a solution of (7) and conse-
quently of (6), with appropriate covariant derivatives defined
by (8), (9), and Dirichlet boundary conditions defined by the
original f (x,y) at the boundary of the selected reconstruc-
tion area.

A simple way to solve Laplace equation (15) in a given
area with Dirichlet boundary conditions is to iterate with the
following kernel (divided by 4):
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adaptation of human vision. Also, our general approach is
close to [Geo05].

Figure 10: The central rectangle has constant pixel values.

The simultaneous contrast illusion, Figure 10, is an
example which shows that humans do not perceive lumi-
nance directly. (See [Gaz00, Sec00] for a general survey
on lightness perception and examples of illusions.) The
figure shows an uniform gray band surrounded by a variable
background. Due to our visual system’s adaptation, the
band appears to vary in lightness (perceived brightness) in
opposition to its surroundings. Following terminology from
Physics, we will call this contravariant change in lightness.

Lightness is perceived by humans through a given visual
system in a given state of adaptation. The state of adaptation
is critical to our fundamental judgement of brightness and
color. If the equations we use do not reflect this adaptation,
they can not produce results that are acceptable to that vi-
sual system. We find the concept of modified or covariant
derivative used in Physics to be a useful tool for making the
equations change “covariantly” with the adaptation of the vi-
sual system.

In the von Kries approach [vK02] adaptation to grayscale
is generalized to three types of sensors in the retina, L,M,
and S, which are responsible for color perception. Adapta-
tion is described by a multiplication of the (L,M,S) vector
by a matrix diagonal in LMS space. Local effects of adap-
tation of the von Kries type have been used in [Geo05] to
derive a mathematical description of the visual system.

In this paper we provide a simple mathematical recipe that
describes effects of adaptation illustrated in Figure 10. In the
usual equations we simply replace each derivative with a co-
variant derivative. These covariant derivatives are specified
so that the covariant gradient is equal to the perceived gra-
dient. In the example of Figure 10, constant pixel values in
the band have nonzero covariant derivative and describe the
perceived gradient.

4. Main Equations

Following the example of Electrodynamics and Quantum
Mechanics, we will replace conventional derivatives with co-
variant derivatives. They are closely related to the measure-
ment process, and in Theoretical Physics they are responsi-
ble for inertial effects, gravitation, electromagnetic and other
interactions. Introduced by Einstein, Grossmann and Weyl
[EG96,Wey23], they define the so-called “minimal” interac-
tion. Using covariant derivatives in the above sense is new to
the field of computer vision.

Covariant derivatives in our approach describe adaptation
of the visual system in the following way. As suggested in
[Geo05], a perceptually correct gradient is written based on
the following simple recipe: Each derivative is replaced with
a “derivative + function” expression:

∂
∂x

→ ∂
∂x

+A1(x,y) (3)

∂
∂y

→ ∂
∂y

+ A2(x,y) (4)

Here A1 and A2 are the x and y components of the vector
function A(x,y), which is used to describe the adaptation of
the visual system. It represents the additional freedom which
redefines our perception of gradients based on adaptation
and will be specified later, in equations (8), (9) and (10). The
gradient visible in Figure 10 is due to covariant derivative
adapted to the surroundings.

It is well known that the Laplace equation � f = 0 with
Dirichlet boundary conditions is the simplest way to recon-
struct (or inpaint) a defective area in an image. Let’s write
the derivatives explicitly:

∂
∂x

∂
∂x

f +
∂
∂y

∂
∂y

f = 0, (5)

After performing the above substitution (3), (4), the Laplace
equation (5) is converted into the covariant Laplace equa-
tion:

(
∂
∂x

+A1)(
∂
∂x

+ A1) f +(
∂
∂y

+ A2)(
∂
∂y

+A2) f = 0, (6)

which after differentiation can be written as

� f + f divA +2A ·grad f +A ·A f = 0. (7)

Here the vector function A(x,y) = (A1(x,y),A2(x,y))
describes adaptation of the visual system. It is related to
the “guidance field” in Poisson Image Editing [PGB03],
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the patch. A further improvement reported in [Geo04] is
a fourth order "bi-Poisson" equation, which matches both
pixel values and gradients at the boundary.

This simple approach has been very successful, described
in the media as "redefining the way retouching is done in
photography". An Internet search on Healing Brush reveals
its popularity.

2. Problems with Poisson cloning

Our current paper describes an improvement to both Poisson
cloning and the Healing Brush. Poisson cloning between
areas of different lighting conditions can be a problem
without this improvement. This often is the case with face
retouching to remove wrinkles when unwrinkled skin is
only available in areas of different lighting.

To provide a clean example of the problem, let’s try to
remove the scratch from the shadow area in Figure 5 using
only source material from the illuminated area.

Figure 5: Original image of pebbles and a scratch.

Figure 6: Scratch removed by simple inpainting.

Figure 6 shows the result of inpainting. Again, it is too
smooth.

In Figure 7, we see the result of Poisson cloning from
illuminated area into the shadow area. It correctly matches

Figure 7: Scratch removed by Poisson cloning from the illu-
minated area.

Figure 8: Scratch removed by covariant cloning from the
same illuminated area as in Figure 7. Method described in
section 4.

pixel values at the boundary of the patch, but the cloned
pebbles are still easy to spot. There is too much variation,
too high contrast, or dynamic range, in the "healed" area
of the image. This problem is inherent in the nature of
the Poisson equation (1), which transfers variations of g
without modifying their amplitude even if new brightness
values are modified to match the surroundings.

Figure 9: Areas used for Poisson cloning in Figure 7 and
covariant reconstruction, Figure 8.

3. The covariant approach

In order to solve this problem we borrow from the Retinex
[Lan77, Hor74] and the von Kries [vK02] theories of the
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pixel values and gradients at the boundary.

This simple approach has been very successful, described
in the media as "redefining the way retouching is done in
photography". An Internet search on Healing Brush reveals
its popularity.

2. Problems with Poisson cloning

Our current paper describes an improvement to both Poisson
cloning and the Healing Brush. Poisson cloning between
areas of different lighting conditions can be a problem
without this improvement. This often is the case with face
retouching to remove wrinkles when unwrinkled skin is
only available in areas of different lighting.

To provide a clean example of the problem, let’s try to
remove the scratch from the shadow area in Figure 5 using
only source material from the illuminated area.

Figure 5: Original image of pebbles and a scratch.

Figure 6: Scratch removed by simple inpainting.

Figure 6 shows the result of inpainting. Again, it is too
smooth.

In Figure 7, we see the result of Poisson cloning from
illuminated area into the shadow area. It correctly matches

Figure 7: Scratch removed by Poisson cloning from the illu-
minated area.

Figure 8: Scratch removed by covariant cloning from the
same illuminated area as in Figure 7. Method described in
section 4.

pixel values at the boundary of the patch, but the cloned
pebbles are still easy to spot. There is too much variation,
too high contrast, or dynamic range, in the "healed" area
of the image. This problem is inherent in the nature of
the Poisson equation (1), which transfers variations of g
without modifying their amplitude even if new brightness
values are modified to match the surroundings.

Figure 9: Areas used for Poisson cloning in Figure 7 and
covariant reconstruction, Figure 8.
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same illuminated area as in Figure 7. Method described in
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areas of different lighting conditions can be a problem
without this improvement. This often is the case with face
retouching to remove wrinkles when unwrinkled skin is
only available in areas of different lighting.

To provide a clean example of the problem, let’s try to
remove the scratch from the shadow area in Figure 5 using
only source material from the illuminated area.
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without modifying their amplitude even if new brightness
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Covariant Image Reconstruction
Further development of the mathematical tools behind the Adobe® Photoshop® Healing Brush
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Adaption of Human Vision Poisson Equation

 Covariant Derivative

Covariant Laplace Equation

Covariant Image Reconstruction

Poisson Cloning Covariant Cloning
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Note
Illusion on the left serves as a
motivation for the Covariant Derivative substitution (right).
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Note
Make Covariant Derivative substitution
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Note
Adaptation to texture image g(x, y) means covariant
derivative of g is zero.
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For more details 
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